Large-scale profiling of signalling pathways reveals an asthma specific signature in bronchial smooth muscle cells
نویسندگان
چکیده
BACKGROUND Bronchial smooth muscle (BSM) cells from asthmatic patients maintain in vitro a distinct hyper-reactive ("primed") phenotype, characterized by increased release of pro-inflammatory factors and mediators, as well as hyperplasia and/or hypertrophy. This "primed" phenotype helps to understand pathogenesis of asthma, as changes in BSM function are essential for manifestation of allergic and inflammatory responses and airway wall remodelling. OBJECTIVE To identify signalling pathways in cultured primary BSMs of asthma patients and non-asthmatic subjects by genome wide profiling of differentially expressed mRNAs and activated intracellular signalling pathways (ISPs). METHODS Transcriptome profiling by cap-analysis-of-gene-expression (CAGE), which permits selection of preferentially capped mRNAs most likely to be translated into proteins, was performed in human BSM cells from asthmatic (n=8) and non-asthmatic (n=6) subjects and OncoFinder tool were then exploited for identification of ISP deregulations. RESULTS CAGE revealed >600 RNAs differentially expressed in asthma vs control cells (p≤0.005), with asthma samples showing a high degree of similarity among them. Comprehensive ISP activation analysis revealed that among 269 pathways analysed, 145 (p<0.05) or 103 (p<0.01) are differentially active in asthma, with profiles that clearly characterize BSM cells of asthmatic individuals. Notably, we identified 7 clusters of coherently acting pathways functionally related to the disease, with ISPs down-regulated in asthma mostly targeting cell death-promoting pathways and up-regulated ones affecting cell growth and proliferation, inflammatory response, control of smooth muscle contraction and hypoxia-related signalization. CONCLUSIONS These first-time results can now be exploited toward development of novel therapeutic strategies targeting ISP signatures linked to asthma pathophysiology.
منابع مشابه
Series ‘‘signalling and Transcriptional Regulation in Inflammatory and Immune Cells: Importance in Lung
Asthma is increasing in prevalence in the developing world, affecting ,10% of the world’s population. It is characterised by chronic lung inflammation and airway remodelling associated with wheezing, shortness of breath, acute bronchial hyperresponsiveness to a variety of innocuous stimuli and a more rapid decline in lung function over time. Airway remodelling, involving proliferation and diffe...
متن کاملDysfunctional interaction of C/EBPalpha and the glucocorticoid receptor in asthmatic bronchial smooth-muscle cells.
BACKGROUND Increased proliferation of bronchial smooth-muscle cells may lead to increased muscle mass in the airways of patients with asthma. The antiproliferative effect of glucocorticoids in bronchial smooth-muscle cells in subjects without asthma is mediated by a complex of the glucocorticoid receptor and the CCAAT/enhancer binding protein alpha (C/EBPalpha). We examined the signaling pathwa...
متن کاملRole of Cytokines in Pathophysiology of Asthma
The worldwide incidence, morbidity and mortality of asthma are increasing dramatically. It is one of the most common disorders encountered in clinical medicine in both children and adults. It affects approximately 5% of the adult population in the western world and its reported incidence is increasing vigorously in many developed nations. A network of a novel mediator known as ‘pleiotropic cyto...
متن کاملPathophysiology of bronchial smooth muscle remodelling in asthma.
Whereas the role of bronchial smooth muscle remains controversial in healthy subjects its role is well established in asthmatics. Bronchial smooth muscle contraction induces airway narrowing. The smooth muscle also contributes to bronchial inflammation by secreting a range of inflammatory mediators, recruiting and activating inflammatory cells, such as mast cells or T-lymphocytes. In addition, ...
متن کاملThe role of RhoA-mediated Ca2+ sensitization of bronchial smooth muscle contraction in airway hyperresponsiveness.
Smooth muscle contraction is mediated by Ca2+-dependent and Ca2+-independent pathways. The latter Ca2+-independent pathway, termed Ca2+ sensitization, is mainly regulated by a monomeric GTP binding protein RhoA and its downstream target Rho-kinase. Recent studies suggest a possible involvement of augmented RhoA/Rho-kinase signaling in the elevated smooth muscle contraction in several human dise...
متن کامل